MIT Researchers Develop Model To Predict MOOC Dropouts

01 Jul

By Joshua Bolkan

Researchers from the Massachusetts Institute of Technology have developed a model that aims to predict when students will drop out of a massive open online course (MOOC).

The model, presented at last week’s Conference on Artificial Intelligence in Education, was trained on data from one course and is designed to apply to a wide range of other courses. “The prediction remains fairly accurate even if the organization of the course changes, so that the data collected during one offering doesn’t exactly match the data collected during the next,” according to a news release.

The study was conducted by Kalyan Veeramachaneni, a research scientist at MIT’s Computer Science and Artificial Intelligence Laboratory, and Sebastien Boyer, a graduate student in MIT’s Technology and Policy Program.

“There’s a known area in machine learning called transfer learning, where you train a machine-learning model in one environment and see what you have to do to adapt it to a new environment,” said Veeramachaneni, in a prepared statement. “Because if you’re not able to do that, then the model isn’t worth anything, other than the insight it may give you. It cannot be used for real-time prediction.”

Veeramachaneni and Boyer began by compiling a list of variables such as amount of time spent per correct homework item and amount of time spent on learning resources such as video lectures.

“Next, for each of three different offerings of the same course, they normalized the raw values of those variables against the class averages,” according to information released by MIT. “So, for instance, a student who spent two hours a week watching videos where the class average was three would have a video-watching score of 0.67, while a student who spent four hours a week watching videos would have a score of 1.33.”

[ Full article available at Campus Technology: ]

Leave a comment

Posted by on July 1, 2015 in MOOCs in the News


Tags: , ,

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: